Bioremediation: A Sustainable Approach for Environmental Cleanup 13
future. Approaches to bioremediation largely depend on the concepts of in-situ and ex-situ technology.
In order to select the bioremediation method that would remove contaminants effectively, different
factors such as the presence of a particular microbial community, the bioavailability of pollutants
and environmental conditions have to be taken into consideration. As a result, improving our
understanding of microbial populations and how they interact with their specific environment and
pollutants, learning more about microbial genomics to increase their capacity for biodegradation
and evaluating the efficacy of new bioremediation strategies in the field will allow one to develop
more convenient bioremediation techniques.
References
Abbas, N., M. T. Butt, M. M. Ahmad, F. Deeba and N. Hussain. 2021. Phytoremediation potential of Typha latifolia
and water hyacinth for removal of heavy metals from industrial wastewater. Chem. Int. 7(2): 103–111.
Agrawal, N., V. Kumar and S. K. Shahi. 2021. Biodegradation and detoxification of phenanthrene in in-vitro and
in vivo conditions by a newly isolated ligninolytic fungus Coriolopsis byrsina strain APC5 and characterization
of their metabolites for environmental safety. Environ. Sci. Pollut. Res., 1–16.
Aggarwal, P. K., J. L. Means, R. E. Hinchee, G. L. Headington and A. R. Gavaskar. 1990. Methods to select chemicals
for in situ biodegradation of fuel hydrocarbons. Batt. Col. Div. Oh.
Ajaz, M., A. Elahi and A. Rehman. 2018. Degradation of azo dye by bacterium, Alishewanella sp. CBL-2 isolated
from industrial effluent and its potential use in decontamination of wastewater. J. of Water Reuse Desalin. 8(4):
507–515.
Akansha, K., A. N. Yadav, M. Kumar, D. Chakraborty and S. Ghosh Sachan. 2022. Decolorization and degradation of
reactive orange 16 by Bacillus stratosphericus SCA1007. Folia Microbiol. 67(1): 91–102.
Ali, H., E. Khan and M. A. Sajad. 2013. Phytoremediation of heavy metals—concepts and applications. Chemosphere.
91(7): 869–881.
Antizar-Ladislao, B. 2010. Bioremediation: working with bacteria. Elements. 6(6): 389–394.
Atlas, R. M. and J. Philp. 2005. Bioremediation. Applied Microbial Solutions for Real-world Environmental Cleanup.
ASM Press.
Azab, E. and A. K. Hegazy. 2020. Monitoring the efficiency of Rhazya stricta L. plants in phytoremediation of heavy
metal-contaminated soil. Plants. 9(9): 1057.
Azubuike, C. C., C. B. Chikere and G. C. Okpokwasili. 2016. Bioremediation techniques–classification based on site
of application: principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 32(11): 1–18.
Bako, C. M., T. E. Mattes, R. F. Marek, K. C. Hornbuckle and J. L. Schnoor. 2021. Dataset describing biodegradation
of individual polychlorinated biphenyl congeners (PCBs) by Paraburkholderia xenovorans LB400 in presence
and absence of sediment slurry. Data in Brief. 35: 106821.
Barathi, S. and N. Vasudevan. 2001. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated
from a petroleum-contaminated soil. Environ. Int. 26(5-6): 413–416.
Barroso, G. M., J. B. dos Santos, I. T. de Oliveira, T. K. M. R. Nunes, E. A. Ferreira, I. M. Pereira, D. V. Silva and
M. de Freitas Souza. 2020. Tolerance of Bradyrhizobium sp. BR 3901 to herbicides and their ability to use
these pesticides as a nutritional source. Ecol. Indic. 119: 106783.
Bedard, D. L. and R. J. May. 1995. Characterization of the polychlorinated biphenyls in the sediments of Woods Pond:
evidence for microbial dechlorination of Aroclor 1260 in situ. Environ. Sci. Technol. 30(1): 237–245.
Bender, J. and P. Phillips. 2004. Microbial mats for multiple applications in aquaculture and bioremediation. Bioresour.
Technol. 94(3): 229–238.
Bhattacharya, S., A. Das, K. Prashanthi, M. Palaniswamy and J. Angayarkanni. 2014. Mycoremediation of Benzo
[a] pyrene by Pleurotus ostreatus in the presence of heavy metals and mediators. 3 Biotech. 4(2): 205–211.
Boopathy, R. 2000. Factors limiting bioremediation technologies. Bioresour. Technol. 74(1): 63–67.
Boyle, A. W., C. J. Silvin, J. P. Hassett, J. P. Nakas and S. W. Tanenbaum. 1992. Bacterial PCB
biodegradation. Biodegradation. 3(2): 285–298.
Brar, S. K., M. Verma, R. Y. Surampalli, K. Misra, R. D. Tyagi, N. Meunier and J. F. Blais. 2006. Bioremediation
of hazardous wastes—a review. Practice Periodical of Hazardous. J. Hazard. Toxic Radioact. Waste. 10(2):
59–72.
Briceño, G., K. Vergara, H. Schalchli, G. Palma, G. Tortella, M. S. Fuentes and M. C. Diez. 2018. Organophosphorus
pesticide mixture removal from environmental matrices by a soil Streptomyces mixed culture. Environ. Sci.
Pollut. Res. 25(22): 21296–21307.
Cao, H., C. Wang, H. Liu, W. Jia and H. Sun. 2020. Enzyme activities during Benzo [a] pyrene degradation by the
fungus Lasiodiplodia theobromae isolated from a polluted soil. Sci. Rep. 10(1): 1–11.